Use When we have to generate large number of prime Numbers Click Here!
divide by their gcd's to prevent overflow
Find Area of triangle using Side length Heron's Formula.
Area = √(P(P−A)(P−B)(P−C) ) where P is semi perimeter
(ab)%p = ((a%p)*(b%p))%p Use this to compute large modulos like a^n
gcd(a,b)=gcd(a,b%a) Let X=gcd(a,b) then gcd(X/a,X/b)=1
gcd(a,b)=gcd(a,b%a) Let X=gcd(a,b) then gcd(X/a,X/b)=1
To find number of bits required to represent a number : $$ \lfloor {\log_2{n}} \rfloor + 1$$
for (int i = 2; i * 1ll * i <= x; ++i) {
    if (x % i == 0) {
        dd.push_back(i);
        if (i != x / i) {
            dd.push_back(x / i);
        }
    }
}
            
                    
        ll NcR(ll n, ll r) 
        {  
            ll p = 1, k = 1;  
            if (n - r < r) 
                r = n - r; 
        
            if (r != 0) { 
                while (r) { 
                    p *= n; 
                    k *= r; 
                    ll m = __gcd(p, k); 
                    p /= m; 
                    k /= m; 
                    n--; 
                    r--; 
                } 
            } 
        
            else
                p = 1; 
            return p;
        }